2026-01-09 Conférence ADMÉE-Europe Note-O-Matic

Repenser la correction avec l’intelligence artificielle : enjeux éthiques et pédagogiques

Auteures: Martine Peters, Mélissande Trottin, Dolorès Grossemy

Références

Diapositive 3: Introduction: utilisation de l’IA

Ng, D. T. K., Leung, J. K. L., Su, M. J., Yim, I. H. Y., Qiao, M. S. et Chu, S. K. W. (2022). AI literacy in K-16 classrooms. Springer Nature. https://doi.org/https://doi.org/10.1007/978-3-031-18880-0

King, A. E. (2025). Artificial intelligence, pedagogy and academic integrity. Springer. https://doi.org/10.1007/978-3-031-92534-4

Gligorea, I., Cioca, M., Oancea, R., Gorski, A., Gorski, H. et Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences. https://doi.org/10.3390/educsci13121216

Mulyani, H., Istiaq, M. A., Shauki, E. R., Kurniati, F. et Arlinda, H. (2025). Transforming education: exploring the influence of generative AI on teaching performance. Cogent Education, 12(1). https://doi.org/10.1080/2331186X.2024.2448066

Diapositive 4: IA et manque d’intégrité

Dakakni, D. et Safa, N. (2023). Artificial intelligence in the L2 classroom: Implications and challenges on ethics and equity in higher education: A 21st century Pandora’s box. Computers and Education: Artificial Intelligence, 5. https://doi.org/10.1016/j.caeai.2023.100179

Grassini, S. (2023). Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692

Leaton Gray, S., Edsall, D. et Parapadakis, D. (2025). AI-Based Digital Cheating At University, and the Case for New Ethical Pedagogies. Journal of Academic Ethics, 1-18. https://doi.org/10.1007/s10805-025-09642-y

Shi, L., Ding, A.-C. et Choi, I. (2024). Investigating Teachers’ Use of an AI-Enabled System and Their Perceptions of AI Integration in Science Classrooms: A Case Study. Education Sciences, 14(11), 1187. https://doi.org/10.3390/educsci14111187

Diapositive 5: Comment les enseignants se servent de l’IA

Celik, I., Dindar, M., Muukkonen, H. et Järvelä, S. (2022). The Promises and Challenges of Artificial Intelligence for Teachers: a Systematic Review of Research. TechTrends : Linking Research and Practice to Improve Learning A publication of the Association for Educational Communications & Technology, 66(4), 616-630. https://doi.org/10.1007/s11528-022-00715-y

Chan, C. K. Y. et Tsi, L. H. Y. (2024). Will generative AI replace teachers in higher education? A study of teacher and student perceptions. Studies in Educational Evaluation, 83. https://doi.org/10.1016/j.stueduc.2024.101395

Kooli, C. et Yusuf, N. (2024). Transforming Educational Assessment: Insights Into the Use of ChatGPT and Large Language Models in Grading. International Journal of Human–Computer Interaction, 0(0), 1-12. https://doi.org/10.1080/10447318.2024.2338330

Diapositive 7 : Cadre théorique : évaluation des travaux

Stern, L. A. et Solomon, A. (2006). Effective faculty feedback: The road less traveled. Assessing Writing, 11(1), 22-41. https://doi.org/10.1016/j.asw.2005.12.001

Segueda, S. (2023). Évaluation des apprentissages en contexte universitaire: Quand les étudiants finissent par adopter la posture du «cabri mort» face à la quantité de travaux évalués. e-JIREF, 9(2), 27-46.

Diapositive 8 : L’évaluation sert à …

Moysan, A. (2025). La correction des copies d’élèves, un geste didactique utopique ? Le Français aujourd’hui, 229(2), 67-78. https://doi.org/10.3917/lfa.229.0067

Percell, J. C. (2017). Lessons from Alternative Grading: Essential Qualities of Teacher Feedback. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 90(4), 111-115. https://doi.org/10.1080/00098655.2017.1304067

Cain, J., Medina, M., Romanelli, F. et Persky, A. (2022, Oct). Deficiencies of Traditional Grading Systems and Recommendations for the Future. Am J Pharm Educ, 86(7), 8850. https://doi.org/10.5688/ajpe8850

Diapositive 9: Évaluation, IA et balises

Daly, P. et Deglaire, E. (2025). AI-enabled correction: A professor’s journey. Innovations in Education and Teaching International, 62(4), 1241-1257. https://doi.org/10.1080/14703297.2024.2390486

Diapositive 10 : Dangers de l’évaluation avec l’IA

Wu, X., Duan, R. et Ni, J. (2024). Unveiling security, privacy, and ethical concerns of ChatGPT. Journal of Information and Intelligence, 2(2), 102-115. https://doi.org/10.1016/j.jiixd.2023.10.007

Rembert, M. l., Couture, H., Gosselin, S., Pelletier, G., Québec . Commission de l’éthique en science et en, t. et Québec . Conseil supérieur de, l. e. d. (2024). Intelligence artificielle générative en enseignement supérieur : enjeux pédagogiques et éthiques. Conseil supérieur de l’éducation : Commission de l’éthique en science et en technologie. https://www.cse.gouv.qc.ca/wp-content/uploads/2024/04/50-0566-SO-IA-generative-enseignement-superieur-enjeux-ethiques.pdf

Daly, P. et Deglaire, E. (2025). AI-enabled correction: A professor’s journey. Innovations in Education and Teaching International, 62(4), 1241-1257. https://doi.org/10.1080/14703297.2024.2390486

Diapositive 11: Évaluation par l’IA versus par un être humain

Dimari, A., Tyagi, N., Davanageri, M., Kukreti, R., Yadav, R., Dimari, H., International Conference on Knowledge, E. et Communication, S. (2024). AI-Based Automated Grading Systems for open book examination system: Implications for Assessment in Higher Education. Dans 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (p. 1-7). https://doi.org/10.1109/ICKECS61492.2024.10616490

Xu, X., Sun, F. et Hu, W. (2025). Integrating human expertise with GenAI: Insights into a collaborative feedback approach in translation education. System, 129. https://doi.org/10.1016/j.system.2025.103600

Bulut, O., Beiting-Parrish, M., Casabianca, J. M., Slater, S. C., Jiao, H., Song, D., Ormerod, C. M., Fabiyi, D. G., Ivan, R., Walsh, C., Rios, O., Wilson, J., Yildirim-Erbasli, S. N., Wongvorachan, T., Liu, J. X., Tan, B. et Morilova, P. (2024). The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges. http://arxiv.org/abs/2406.18900

Diapositive 12: Jugement évaluatif de l’enseignant

Meissel, K., Meyer, F., Yao, E., & Rubie-Davies, C. (2017). Subjectivity of teacher judgments: Exploring student characteristics that influence teacher judgments of student ability. Teaching and Teacher Education, 65, 48-60. https://doi.org/10.1016/j.tate.2017.02.021

Urhahne, D., & Wijnia, L. (2021). A review on the accuracy of teacher judgments. Educational Research Review, 32, 100374. https://doi.org/10.1016/j.edurev.2020.100374

Diapositive 15: Principes de l’utilisation responsable de l’IA

Université du Québec. (2025). Énoncé de principes sur l’utilisation responsable de l’intelligence artificielle générative dans les activités de formation et de recherche. Université du Québec. https://docutheque.uquebec.ca/id/eprint/559